

HUMAN HEALTH RISK ASSESSMENT REPORT

Rye Bank Fields Ryebank Road, Manchester, Chorlton M21 9LU

Prepared for:

Manchester Metropolitan University

Report Ref: 13-533-R3-2 Date Issued: 18/06/2020

E3P

Taylor Road Trafford Park Urmston Manchester M41 7JQ

+ 44 (0) 161 707 9612 https://e3p.co.uk/

Registered in England CRN: 807255262

QUALITY ASSURANCE

PROJECT NUMBER		13-533	
VERSION	Version 1	Version 2	Version 3
REMARKS	Final		
DATE	June 2020		
PREPARED BY	E. Moss		
QUALIFICATIONS	BSc (Hons), FGS		
SIGNATURE	EMOS		
CHECKED BY	R. Hodnett		
QUALIFICATIONS	BSc (Hons), FGS		
SIGNATURE	Risiadnett		
AUTHORISED BY	M. Dyer		
QUALIFICATIONS	BSc, MSc, PIEMA, FGS, CEnv		
SIGNATURE	HL 0.0		

Table of Contents

1. IN 1.1.	TRODUCTIONBackground	3
1.1.	Proposed Development	
1.3.	Previous reports	3
1.4.	Objectives	
1.5.	Limitations	
1.6.	Confidentiality	4
2. TIE	ER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT	5
3. CC	ONTINUED AND FUTURE USE OF THE SITE	14
APPENI	DIX I LIMITATIONS	15
APPENI	DIX II GLOSSARY	17
	DIX III DRAWINGS	
APPENI	DIX IV CHEMICAL TESTING RESULTS	21
APPENI	DIX V JIWG RECEPTOR RANKING ASSESSMENT	22
DRAWII	NG LIST	
13-533-0	001 - Site Location Plan 004 - Exploratory Hole Location Plan	

13-533-005 - Exploratory Hole Location Plan with Historical Features

1. INTRODUCTION

1.1. BACKGROUND

E3P have previously completed a ground investigation at the subject site, Rye Bank Fields, Chorlton, between 3rd and 5th December 2019 on behalf of Manchester Metropolitan University. The investigation comprised 30 mechanically excavated trial pits, 12 window sample probeholes, two cable percussion boreholes, ten Dynamic Cone Penetrometers and the installation of environmental monitoring installations. The detailed findings of the ground investigation are recorded in the E3P Phase II Geoenvironmental Site Assessment (Ref, 13-533-R2, dated March 2020).

Historically the site comprised clay pits associated with a brick works which was subsequently backfilled. As part of the E3P Phase II Geoenvironmental Site Assessment (Ref, 13-533-R2, dated March 2020) a Tier 1 Human Health Risk Assessment was undertaken to determine if any potential contaminants within the underlying soils and groundwater pose an unacceptable level of risk to the identified receptors. The assessment was undertaken against criteria for residential end use with plant uptake. However, the site is currently used by local resident for recreational activities including walking, foraging and more recently the planting of fruit trees; therefore Manchester Metropolitan University have requested E3P assess the data obtained during the initial site investigation in relation to current activities.

The aim of this Human Health Risk Assessment Report is to produce a Tier 1 Human Health Risk Assessments of soil data obtained by E3P (Ref, 13-533-R2, dated March 2020) during the ground investigation, comparing the data against screening criteria for Public Open Space and Allotment end use.

1.2. PROPOSED DEVELOPMENT

E3P understands that Manchester Metropolitan University (MMU) are considering the proposed divestment of their asset at Rye Bank Fields, Chorlton which is deemed to be surplus to requirement. As part of the divestment a Development Framework was approved by Manchester City Council in June 2019 that promotes a high quality residential development across the site with associated gardens, estate roads and infrastructure. A proposed development plan has not yet been made available to E3P.

1.3. PREVIOUS REPORTS

The following phases of geoenvironmental investigations have previously been carried out at the site:

- E3P Phase I Geoenvironmental Site Assessment, Ref 13-533-R1-1, dated March 2020
- E3P Phase II Geoenvironmental Site Assessment, Ref 13-533-R2-1, dated March 2020
- WSP Parsons Brinckerhoff Environmental Input Report, Ref 70014100, dated October 2015
- WSP Parsons Brinckerhoff Geo-Environmental Appraisal, Ref 70014100, dated 18th September 2015;

1.4. OBJECTIVES

The objectives of the geoenvironmental assessment are as follows:

Undertake a Human Health Tier 1 Assessment on soil samples obtained by E3P (Ref, 13-533-R2, dated March 202) during the ground investigation, comparing the data against screening criteria for Public Open Space and Allotment end use.

Provide recommendations regarding future works required.

1.5. LIMITATIONS

The limitations of this report are presented in Appendix I.

1.6. CONFIDENTIALITY

E3P has prepared this report solely for the use of the client and those parties with whom a warranty agreement has been executed, or with whom an assignment has been agreed. Should any third party wish to use or rely upon the contents of the report, written approval must be sought from E3P; a charge may be levied against such approval.

2. TIER I QUALITATIVE CONTAMINATED LAND RISK ASSESSMENT

E3P has undertaken a Tier 1 qualitative risk assessment to determine if any potential contaminants within the underlying soils pose an unacceptable level of risk to the identified receptors.

At Tier 1 stage, the long term (chronic) human health toxicity of the soil has been assessed by comparing the on-site concentrations of organic and inorganic compounds with reference values published in LQM/CIEH S4UL (S4UL3267).

In the first instance, Table 2.1 details the comparison of soil data against allotment end use criteria.

TABLE 2.1 SUMMARY OF INORGANIC AND HYDROCARBON TOXICITY ASSESSMENT FOR AN ALLOTMENT END USE

DETERMINANT	UNIT	GAC	N	MC	LOC. OF EX	PATH WAY	ASSESSMENT
Arsenic	mg/kg	43	16	34	-	1	No Further Action
Cadmium	mg/kg	1.9	16	3.3 2.0	WS102 3.20 m WS112 2.30 m	1	Further Action
Chromium (VI)	mg/kg	1.8	7	36 26 23 43 6.0 24	TP105 0.10 m TP115 1.60 m TP116 1.50 m WS102 3.20 m WS105 3.80 m TP120 2.10 m	1	Further Action
Lead	mg/kg	200	16	820 230 460 1100 220 1000 660 230	TP105 0.10 m TP127 1.80 m TP128 0.80 m WS102 3.20 m TP101 0.10 m TP119 0.10 m TP120 2.10 m TP125 0.10 m	1	Further Action
Mercury	mg/kg	21	16	2.8	-	3	No Further Action
Nickel	mg/kg	53	16	58 80	WS102 3.20 m WS112 2.30 m	1	Further Action
Selenium	mg/kg	88	16	3.8	-	1	No Further Action
Copper	mg/kg	520	16	26005 20	TP128 0.80 m TP119 0.10 m	1	Further Action
Zinc	mg/kg	620	16	760 16002 500 1000	TP128 0.80 m WS102 3.20 m WS112 2.30 m TP119 0.10 m	1	Further Action
Cyanide - Total	mg/kg	791	16	120	-	1	No Further Action
Phenols - Total.	mg/kg	210	7	47	-	1	No Further Action
Asbestos	Fibres	NFD	17	1.183 % 0.036 % 0.014 % <0.001 %	WS101 1.80 m WS102 3.20 m WS112 2.30 m WS110 0.50 m	4	Further Action
Naphthalene	mg/kg	4.1	12	5.1	TP127 1.80 m	3	No Further Action
Acenaphthylene	mg/kg	28	12	11	-	2	No Further Action
Acenaphthene	mg/kg	34	12	2.8	-	1	No Further Action
Fluorene	mg/kg	27	12	17	-	1	No Further Action
Phenanthrene	mg/kg	15	12	19 150	TP128 0.80 m TP119 0.10 m	2	Further Action
Anthracene	mg/kg	380	12	46	-	2	No Further Action

DETERMINANT	UNIT	GAC	N	МС	LOC. OF EX	PATH WAY	ASSESSMENT
Fluoranthene	mg/kg	52	12	150	TP119 0.10 m	2	Further Action
Pyrene	mg/kg	110	12	130	TP119 0.10 m	2	Further Action
Benzo(a)Anthrace ne	mg/kg	2.9	12	3.1 3.4 10 4.4	TP103 1.30 m TP105 0.10 m TP128 0.80 m TP119 0.10 m	2	Further Action
Chrysene	mg/kg	4.1	12	8.7 37	TP128 0.80 m TP119 0.10 m	2	Further Action
Benzo(b)Fluoranth ene	mg/kg	0.99	12	3.0 2.8 11 3.0 1.1 50 3.3	TP103 1.30 m TP105 0.10 m TP128 0.80 m TP101 0.10 m TP113 0.10 m TP119 0.10 m TP125 0.10 m	2	Further Action
Benzo(k)Flouranth ene	mg/kg	37	12	15	-	2	No Further Action
Benzo(a)Pyrene	mg/kg	0.97	12	2.7 2.7 8.9 2.5 1.1 45 2.8	TP103 1.30 m TP105 0.10 m TP128 0.80 m TP101 0.10 m TP113 0.10 m TP119 0.10 m TP125 0.10 m	2	Further Action
Indeno(123- cd)Pyrene	mg/kg	9.5	12	30	TP119 0.10 m	2	Further Action
Dibenzo(a,h)Anthr acene	mg/kg	0.14	12	0.42 0.39 1.1 0.44 0.2 7.2 0.42	TP103 1.30 m TP105 0.10 m TP128 0.80 m TP101 0.10 m TP113 0.10 m TP119 0.10 m TP125 0.10 m	2	Further Action
Benzo(ghi)Perylen	mg/kg	290	12	25	-	2	No Further Action
TPH C5-C6 (aliphatic)	mg/kg	730	3	<0.001	-	3	No Further Action
TPH C6-C8 (aliphatic)	mg/kg	2300	3	<0.001	-	3	No Further Action
TPH C8-C10 (aliphatic)	mg/kg	320	3	<0.001	-	3	No Further Action
TPH C10-C12 (aliphatic)	mg/kg	2200	3	13	-	3	No Further Action
TPH C12-C16 (aliphatic)	mg/kg	1100 0	3	20	-	1	No Further Action
TPH C16-C35 (aliphatic)	mg/kg	26000 0	3	76	-	1	No Further Action
TPH C5-C7 (aromatic)	mg/kg	13	3	<0.001	-	1	No Further Action
TPH C7-C8 (aromatic)	mg/kg	22	3	<0.001	-	3	No Further Action
TPH C8-C10 (aromatic)	mg/kg	8.6	3	<0.001	-	3	No Further Action
TPH C10-C12 (aromatic)	mg/kg	13	3	7.9	-	3	No Further Action

DETERMINANT	UNIT	GAC	N	МС	LOC. OF EX	PATH WAY	ASSESSMENT
TPH C12-C16 (aromatic)	mg/kg	23	3	200 34	TP116 1.50 m WS102 3.20 m	3	Further Action
TPH C16-C21 (aromatic)	mg/kg	46	3	1100, 110 180	TP116 1.50 m TP127 1.80 m WS102 3.20 m	1	Further Action
TPH C21-C35 (aromatic)	mg/kg	370	3	910 250 510	TP116 1.50 m TP127 1.80 m WS102 3.20 m	1	Further Action
TPH C5-C6 (aliphatic)*	mg/kg	730	14	<1.0	-	3	No Further Action
TPH C6-C8 (aliphatic)*	mg/kg	2300	14	<0.1	-	3	No Further Action
TPH C8-C10 (aliphatic)*	mg/kg	320	14	<0.1	-	3	No Further Action
TPH C10-C12 (aromatic)*	mg/kg	13	14	40	TP103 1.30 m	3	Further Action
TPH C12-C16 (aromatic)*	mg/kg	23	14	220	TP119 0.10 m	3	Further Action
TPH C16-C21 (aromatic)*	mg/kg	46	14	67 47 150 51 1700 140	TP103 1.30 m TP105 0.10 m TP128 0.80 m TP113 0.10 m TP119 0.10 m TP120 2.10 m	1	Further Action
TPH C21-C35 (aromatic)*	mg/kg	370	14	460, 1300	TP128 0.80 m TP119 0.10 m	1	Further Action

Notes

Main exposure pathways: 1 = soil ingestion, 2 = dermal contact and ingestion, 3 = vapour inhalation (indoor), 4 = dust inhalation.

Abbreviations: GAC = general assessment criteria, n = number of samples, MC = maximum concentration; Loc of Ex = location of exceedance; NFD = no fibres detected.

Referring to Table 2.1, the results of this direct comparison indicates that the data exceeds the screening criteria for allotment end use for the following contaminants:

0	Cadmium;
0	Chromium (VI);
(*)	Lead;

Nickel;

Oopper;

Zinc;

Asbestos;

Naphthalene;

Phenanthrene;

②	Fluoranthene;
0	Pyrene;
0	Benzo(a)Anthracene;
0	Chrysene;
0	Benzo(b)Fluoranthene;
0	Benzo(a)Pyrene;
®	Indeno(123-cd)Pyrene;
0	Dibenzo(a,h)Anthracene;
®	TPH C10-C12 (aromatic);
0	TPH C12-C16 (aromatic);
0	TPH C16-C21 (aromatic);
0	TPH C12-C16 (aromatic);
®	TPH C16-C21 (aromatic); and

The laboratory analysis confirms the assessment within the initial conceptual site model that the main constituents of concern were likely to be heavy metals, asbestos, PAHs, and hydrocarbon compounds.

In relation to these exceedances, the following can be determined:

- The main exposure pathways based on the Tier I exceedances are:
 - Soil ingestion;

TPH C21-C35 (aromatic).

- Vapour inhalation (indoor);
- Dust inhalation;
- Dermal contact and ingestion; and,
- Consumption of homegrown vegetables.

A comparison against soil analysis against Public Open Space end use criteria has been completed and summarised within Table 2.2.

TABLE 2.2 SUMMARY OF INORGANIC AND HYDROCARBON TOXICITY ASSESSMENT FOR A PUBLIC OPEN SPACE END USE

DETERMINANT	UNITS	GAC	N	МС	LOC. OF EX	PATH WAY	ASSESSMENT
Arsenic	mg/kg	170	16	34	-	1	No Further Action
Cadmium	mg/kg	532	16	1.8	-	1	No Further Action
Chromium (VI)	mg/kg	220	7	43	-	1	No Further Action
Lead	mg/kg	200	16	820 230 460 1100 220 1000 680 230	TP105 0.10 m TP1271.80 m TP128 0.80 m WS102 3.20 m TP101 0.10 m TP119 0.10 m TP120 2.10 m TP125 0.10 m	1	Further Action
Mercury**	mg/kg	30	16	2.8	-	3	No Further Action
Nickel	mg/kg	800	16	80	-	1	No Further Action
Selenium	mg/kg	1800	16	3.8	-	1	No Further Action
Copper	mg/kg	4400 0	16	2600	-	1	No Further Action
Zinc	mg/kg	1700 00	16	2500	-	1	No Further Action
Cyanide - Total Phenols - Total.	mg/kg mg/kg	791 210	16 7	120 47	-	1	-
Asbestos	Fibres	NFD	17	1.18%, 0.036 %, 0.014 %, <0.001	WS101 1.80 m WS102 3.20 m WS112 2.30 m WS110 0.50 m	4	Further Action
Naphthalene	mg/kg	1200	12	0.94	-	3	No Further Action
Acenaphthylene	mg/kg	2900	12	11	-	2	No Further Action
Acenaphthene	mg/kg	2900 0	12	2.8	-	1	No Further Action
Fluorene	mg/kg	2000	12	17	-	1	No Further Action
Phenanthrene	mg/kg	6200	12	150	-	2	No Further Action
Anthracene	mg/kg	1500 00	12	46	-	2	No Further Action
Fluoranthene	mg/kg	6300	12	150	-	2	No Further Action
Pyrene	mg/kg	1500 0	12	130	-	2	No Further Action
Benzo(a)Anthracen e	mg/kg	49	12	44	-	2	No Further Action
Chrysene	mg/kg	93	12	37		2	No Further Action

DETERMINANT	UNITS	GAC	N	МС	LOC. OF EX	PATH WAY	ASSESSMENT
Benzo(b)Fluoranthe ne	mg/kg	13	12	50	TP119 0.10 m	2	Further Action
Benzo(k)Fluoranthe ne	mg/kg	370	12	15	-	2	No Further Action
Benzo(a)Pyrene	mg/kg	11	12	45	TP119 0.10 m	2	Further Action
Indeno(123- cd)Pyrene	mg/kg	150	12	30	-	2	No Further Action
Dibenzo(a,h)Anthra cene	mg/kg	1.1	12	1.1 7.2	TP128 0.80 m TP119 0.10 m	2	Further Action
Benzo(ghi)Perylene	mg/kg	1400	12	25	-	2	No Further Action
TPH C5-C6 (aliphatic)	mg/kg	9500 0	3	<0.001	-	3	No Further Action
TPH C6-C8 (aliphatic)	mg/kg	1500 00	3	<0.001	-	3	No Further Action
TPH C8-C10 (aliphatic)	mg/kg	1400 0	3	<0.001	-	3	No Further Action
TPH C10-C12 (aliphatic)	mg/kg	2100 0	3	13	-	2	No Further Action
TPH C12-C16 (aliphatic)	mg/kg	2500 0	3	20	-	1	No Further Action
TPH C16-C35 (aliphatic)	mg/kg	45000 0	3	76	-	1	No Further Action
TPH C5-C7 (aromatic)	mg/kg	7600 0	3	<0.001	-	1	No Further Action
TPH C7-C8 (aromatic)	mg/kg	8700 0	3	<0.001	-	3	No Further Action
TPH C8-C10 (aromatic)	mg/kg	7200	3	<0.001	-	3	No Further Action
TPH C10-C12 (aromatic)	mg/kg	9200	3	7.9	-	3	No Further Action
TPH C12-C16 (aromatic)	mg/kg	1000 0	3	200	-	3	No Further Action
TPH C16-C21 (aromatic)	mg/kg	7600	3	1100	-	1	No Further Action
TPH C21-C35 (aromatic)	mg/kg	7800	3	910	-	1	No Further Action
TPH C5-C6 (aliphatic)*	mg/kg	9500 0	14	<1.0	-	3	No Further Action
TPH C6-C8 (aliphatic)*	mg/kg	1500 00	14	<0.1	-	3	No Further Action
TPH C8-C10 (aliphatic)*	mg/kg	1400 0	14	<0.1	-	3	No Further Action
TPH C10-C12 (aromatic)*	mg/kg	9200	14	40	-	3	No Further Action
TPH C12-C16 (aromatic)*	mg/kg	1000 0	14	220	-	3	No Further Action
TPH C16-C21 (aromatic)*	mg/kg	7600	14	1700	-	1	No Further Action
TPH C21-C35 (aromatic)*	mg/kg	7800	14	1300	-	1	No Further Action

Notes

Main exposure pathways: 1 = soil ingestion, 2 = dermal contact and ingestion, 3 = vapour inhalation (indoor), 4 = dust inhalation.

Abbreviations: GAC = general assessment criteria, n = number of samples, MC = maximum concentration; Loc of Ex = location of exceedance; NFD = no fibres detected.

Referring to Table 2.2 the results of this direct comparison indicates that the data exceeds the screening criteria for a Public Open Space (POS) end use for the following contaminants:

- Lead:
- Asbestos;
- Benzo(b)Fluoranthene;
- Benzo(a)Pyrene:
- Dibenzo(a,h)Anthracene;

Asbestos was identified in four samples out of seventeen submitted for analysis. Asbestos in the form of Chrysotile and Amosite loose fibrous debris, loose fibres, bitumen and hard / cement type material was identified. Asbestos was identified within WS102 at 3.20 m bgl, WS112 at 2.30 m bgl, WS110 at 0.50 m bgl and WS101 a 1.80 m bgl. Asbestos piping and sheeting were visually identified in TP116 and TP119 respectively.

There have been no VOCs identified above the laboratory LOD of 1.0 μ g/kg. The SVOC 2-Methylnaphthalene was identified above the limit of detection in TP116 at 1.50 m bgl (0.5 mg/kg), TP127 (4.0 mg/kg) and WS102 (3.20 mg/kg) which was identified in the Made Ground deposits associated with the infilling of the clay pits.

The laboratory analysis confirms the assessment within the initial conceptual site model that the main constituents of concern were likely to be heavy metals, asbestos and PAHs.

In relation to these exceedances, the following can be determined:

- The main exposure pathways based on the Tier I exceedances are:
 - Soil ingestion;
 - Vapour inhalation (indoor);
 - Dust inhalation
 - Dermal contact and ingestion;
 - Consumption of homegrown vegetables; and
- Exceedances have been identified between 0.10 m and 3.20 m bgl within the Made Ground deposits associated with the infilling of former clay pits.

HUMAN HEALTH RISK ASSESSMENT AND MITIGATION

Laboratory analysis of the soils across the site has indicated the presence of asbestos, elevated heavy metals, non-volatile PAHs, and non-volatile TPH compounds within the Made Ground.

The majority of the identified elevated concentrations have primary exposure pathways related to dermal contact and ingestion, soil ingestion and consumption of homegrown produce.

With regards to the elevated SVOCs, naphthalene and volatile TPHs, these present a potential volatilisation to indoor air risk. At present there are no buildings on site in which vapour could accumulate and therefore this risk can be negated to those currently utilising the site.

Asbestos has been identified in four locations across the site. Asbestos quantification has been completed which has identified concentrations to be <0.001% by hand picking weight in WS110 at 0.50 mbgl. However, concentrations above <0.001% by hand picking weight have been identified in WS101 at 1.80 mbgl at 1.183%, WS102 at 3.20 mbgl at 0.036% and WS112 at 2.30 mbgl at 0.014%.

It should be assumed that asbestos fibres are present throughout the Made Ground on site, and therefore materials should be managed according to the E3P Asbestos Risk Mitigation Conceptual Site Model shown in Figure 2.1.

Visual pieces of asbestos have been identified within the site. These should be handpicked, suitably bagged and removed off-site by a licensed waste contractor to a suitable site.

USE OF THE SITE FOR ALLOTMENT END USE

When comparing the soil analysis against the criteria for allotment end use, there are multiple determinants that are considered to be exceeding. A number of these (Cadmium, Chromium (VI), Lead, Nickel, Copper, Zinc, Phenanthrene, Fluoranthene, Pyrene, Benzo (a)Anthracene, Chrysene, Benzo(b)Fluoranthene, Benzo(a)Pyrene, Indeno(123-cd)Pyrene, Dibenzo(a,h)Anthracene, TPH C16-C21 (aromatic), TPH C21-C35 (aromatic)) have the main exposure pathways of soil ingestion, dermal contact and ingestion and consumption of homegrown vegetables. The exceedances have been identified within both shallower and deeper Made Ground soils. It is understood that fruit trees have been planted in the south-eastern corner of the northern sector of the field. Although soils in this area have not been specifically tested as of yet, due to the homogenous nature of the Made Ground on site, it is highly likely that these exceedances are present where fruit trees have been planted. Therefore, from this high level comparison there is considered to be a theoretical long term risk to current users of the site from the identified determinants when cultivating vegetables and fruits.

USE OF THE SITE FOR PUBLIC OPEN SPACE END USE

When looking at the criteria for use of the site as POS, exceedances of determinants (lead, Benzo(b)Fluoranthene, Benzo(a)Pyrene, Dibenzo(a,h)Anthracene) have been identified against the criteria, where the main exposure pathways are soil ingestion and dermal contact and ingestion. Asbestos has also been identified within the soils. As with the allotment assessment the exceedances have been identified within both shallow and deep Made Ground underlying the site. Providing the soils are not disturbed there is deemed to be minimal risk to the general public. However as described above this has occurred during the planting of fruit trees and any other plants that has previously been undertaken.

A Joint Industry Working Group (JIWG) Receptor Ranking decision tool has been completed (Appendix V) in order to assess the risk-rank activities and receptors as part of a preliminary risk assessment under CLR11 at the site. The assessment has been completed using worst case scenario for the site and identified a medium overall ranking.

A further JIWG Receptor Ranking decision tool has been completed for adjacent properties next to the site which has identified a very low overall ranking. The very low risk is considered when there is no land disturbance on site.

The viability for trace asbestos fibres to enter ambient air is considered low with a significant dispersal rate suggesting that the potential for fibres to represent a risk to chronic human health of off site receptors is unlikely. Furthermore, Environmental Essentials have undertaken reassurance air monitoring and personal assessment samples on behalf of Manchester Metropolitan University during recent works on site. This testing concluded that all results proved to be satisfactory being below the limit of quantification and below the mask protection factor of the OPS operative(s) and OPS estimated exposure levels in the plan of work. Therefore, asbestos fibres are not considered to be entering the ambient air.

If the site is to be retained in its current configuration, mitigation measures are required to ensure no soil disturbance. If disturbed there is a risk to users of the site, it is recommended that measures are put in place to reduce and remove any potential of exposure to the site users.

3. CONTINUED AND FUTURE USE OF THE SITE.

From the analysis completed by E3P against allotment and POS screening criteria there are exceedances of determinants which represent a theoretical unacceptable degree of risk to chronic human health when assessing the viable exposure to a critical receptor.

The primary exposure would be attributed to consumption of fruits harvested from trees on-site, albeit this is a highly conservative assessment as the modelling scenario utilised is based on toxicology data derived from the cultivation of vegetables within an impacted soil.

It is recommended that members of the public are deterred from disturbing ground soils and planting plants or crops for human consumption.

Direct exposure to impacted materials within the context of a public open space use for a prolonged period of time is identified as a complete pollutant linkage, therefore mitigation measures should be considered to minimise direct exposure by dermal contact with the soils where significant anthropogenic material is present.

The E3P risk assessment is based on the assessment of chronic exposure / risk to human health of the critical receptor to ensure no unacceptable level of risk through disturbance of the site. It is important to note that the Tier 1 Generic Qualitative Risk Assessment completed to assess the potential for unacceptable degree of exposure as documented herein does not classify the site a 'contaminated'.

END OF REPORT

APPENDIX I LIMITATIONS

- 1. This report and its findings should be considered in relation to the terms of reference and objectives agreed between E3P and the client as indicated in Section 1.3.
- 2. For the work, reliance has been placed on publicly available data obtained from the sources identified. The information is not necessarily exhaustive and further information relevant to the site may be available from other sources. When using the information it has been assumed it is correct. No attempt has been made to verify the information.
- 3. This report has been produced in accordance with current UK policy and legislative requirements for land and groundwater contamination which are enforced by the local authority and the Environment Agency. Liabilities associated with land contamination are complex and requires advice from legal professionals.
- 4. During the site walkover, reasonable effort has been made to obtain an overview of the site conditions. However, during the site walkover, no attempt has been made to enter areas of the site that are unsafe or present a risk to health and safety, are locked, barricaded, overgrown, or the location of the area has not been made known or accessible.
- Access considerations, the presence of services and the activities being carried out on the site limited the locations where sampling locations could be installed and the techniques that could be used.
- 6. Site sensitivity assessments have been made based on available information at the time of writing and are ultimately for the decision of the regulatory authorities.
- 7. Where mention has been made to the identification of Japanese Knotweed and other invasive plant species and asbestos or asbestos-containing materials, this is for indicative purposes only and do not constitute or replace full and proper surveys.
- 8. The executive summary, conclusions and recommendations sections of the report provide an overview and guidance only and should not be specifically relied upon without considering the context of the report in full.
- 9. E3P cannot be held responsible for any use of the report or its contents for any purpose other than that for which it was prepared. The copyright in this report and other plans and documents prepared by E3P is owned by them and no such plans or documents may be reproduced, published or adapted without written consent. Complete copies of this may, however, be made and distributed by the client as is expected in dealing with matters related to its commission. Should the client pass copies of the report to other parties for information, the whole report should be copied, but no professional liability or warranties shall be extended to other parties by E3P in this connection without their explicit written agreement there to by E3P.
- 10. New information, revised practices or changes in legislation may necessitate the reinterpretation of the report, in whole or in part.

APPENDIX II GLOSSARY

TERMS

ACM	Asbestos-containing material	MMP	Materials management plan			
ADS	Acoustic design statement	ND	Not detected			
AST	Above-ground storage tank	NDP	Nuclear density probe			
BGS	British Geological Survey	NMP	Noise management plan			
BSI	British Standards Institute	NPSE	Noise policy statement for England			
BTEX	Benzene, toluene, ethylbenzene, xylenes	NR	Not recorded			
CA	Coal Authority	PAH	Polycyclic aromatic hydrocarbon			
CBR	California bearing ratio	PCB	Polychlorinated biphenyl			
CIEH	Chartered Institute of Environmental Health	PI	Plasticity index			
CIRIA	Construction Industry Research Association	PID	Photo ionisation detector			
CLEA	Contaminated land exposure assessment	POS	Public open space			
CML	Council of Mortgage Lenders	PPE	Personnel protective equipment			
CoC	Contaminants of concern	ProPG	Professional practice guidance			
CSM	Conceptual site model	QA	Quality assurance			
DNAPL	Dense non-aqueous phase liquid (chlorinated solvents, PCB)	SGV	Soil guideline value			
DWS	Drinking water standard	SPH	Separate-phase hydrocarbon			
EA	Environment Agency	SPT	Standard penetration test			
EQS	Environmental quality standard	svoc	Semi-volatile organic compound			
FFL	Finished floor level	TPH	Total and speciated petroleum hydrocarbon			
GAC	General assessment criteria	TPH CWG	Total Petroleum Hydrocarbon (Criteria Working Group)			
GL	Ground level	UKWIR	United Kingdom Water Infrastructure Risk			
GSV	Gas screening value	UST	Underground storage tank			
HCV	Health criteria value	VCC	Vibro-concrete column			
ICSM	Initial conceptual site model	VOC	Volatile organic compound			
LEL	Lower explosive limit	VRSC	Vibro-replacement stone columns			
LMRL	Lower method reporting limit	VSC	Vibro-stone columns			
LNAPL	Light non-aqueous phase liquid (petrol, diesel, kerosene)	WHO	World Health Organisation			
MCV	Moisture condition value	WRAP	Waste and Resources Action Programme			
MIBK	Methyl isobutyl ketone	WTE	Water table elevation			

m	Metres	ppm	Parts per million
km	Kilometres	mg/m³	Milligram per metre cubed
% v/v	Percent volume in air	m bgl bgl	Metres below ground level
mb	Millibars (atmospheric pressure)	m bcl	Metre below cover level
l/hr	Litres per hour	mAOD	Metres above ordnance datum (sea level)
µg/l	Micrograms per litre (parts per billion)	kN/m²	Kilonewtons per metre squared
ppb	Parts per billion	μm	Micrometre
mg/kg	Milligrams per kilogram (parts per million)	SSRT	Site Specific Remediation Target
PSD	Particle Size Distribution	DD	Dry Density
CL:AIRE	Contaminated Land: Applications in Real Environments	Мс	Moisture Content
ρ	Bulk Density	GPR	Ground Penetrating Radar
NDP	Nuclear Density Probe	FFL	Finished Floor Level
LEL	Lower Explosive Limit	UKWIR	UK Water Industry Research
CIRIA	Construction Industry Research and Information Association	LOD	Limit of Detection

APPENDIX III DRAWINGS

APPENDIX IV CHEMICAL TESTING RESULTS

Ella Moss

e3p Office 4 Heliport Business Park Eccles Liverpool Road Manchester M30 7RU

t: 0161 707 9612

e: EMoss@e3p.co.uk

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Combine Report Ryebank ChorIton

Project / Site name: Ryebank Chorlton Samples received on: 06/12/2019

Your job number: 13533 Samples instructed on: 09/12/2019

Your order number: 34146 Analysis completed by: 16/12/2019

Report Issue Number: 1 **Report issued on:** 09/01/2020

Samples Analysed: 4 leachate samples - 17 soil samples

Signed: <

Zina Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference	TP103	TP105	TP111	TP115	TP116			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	1.30	0.10	1.20	1.60	1.50			
Date Sampled	04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	25	33	23	14
Total mass of sample received	kg	0.001	NONE	0.39	0.44	0.30	0.35	0.39
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	-	-	-	-	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	-	9.0	-	12.3	11.2
Total Cyanide	mg/kg	1	MCERTS	1	< 1	< 1	< 1	1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	•	650	-	3200	770
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-	-	-	-	-
Equivalent)	g/l	0.00125	MCERTS	-	-	-	-	-
Water Soluble SO4 16hr extraction (2:1 Leachate		1.25	MCEDIC	_	_	_	_	_
Equivalent)	mg/l	1.25	MCERTS	-	-	-	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	q/l	0.00125	MCERTS	_	0.046	_	0.15	0.11
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	91	-	300	220
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	45.6	-	152	111
Sulphide	mg/kg	1	MCERTS	-	7.0	-	91	36
Total Sulphur	mg/kg	50	MCERTS	-	610	-	1600	1100
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.8	-	-	-	2.4
Total Phenols								
Total Phenols (monohydric)	ma/ka		MCERTS		< 1.0		1.2	< 1.0

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number	nber Non			None Supplied	None Supplied	None Supplied	None Supplied 1.60	None Supplied 1.50
Depth (m)				1.30	0.10	1.20		
Date Sampled					04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs	•							
Naphthalene	mg/kg	0.05	MCERTS	0.35	< 0.05	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	0.59	0.76	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	0.59	0.53	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	4.0	5.1	< 0.05	< 0.05	-
Anthracene	mg/kg	0.05	MCERTS	0.93	1.0	< 0.05	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	5.8	5.9	< 0.05	< 0.05	-
Pyrene	mg/kg	0.05	MCERTS	5.2	5.8	< 0.05	< 0.05	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	3.1	3.4	< 0.05	< 0.05	-
Chrysene	mg/kg	0.05	MCERTS	2.8	2.8	< 0.05	< 0.05	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.0	2.8	< 0.05	< 0.05	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.5	1.5	< 0.05	< 0.05	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.7	2.7	< 0.05	< 0.05	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.3	1.2	< 0.05	< 0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.42	0.39	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.5	1.5	< 0.05	< 0.05	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	33.7	35.4	< 0.80	< 0.80	-

Lab Sample Number	·			1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number			None Supplied None Supplied None Supplied None Supplied				None Supplied	None Supplied
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019 04/12/2019 05/12/2019 05/12/2019				05/12/2019
Time Taken	•			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	21	< 1.0	< 1.0	20
Barium (aqua regia extractable)	mg/kg	1	MCERTS	290	-	12	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	-	0.67	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.4	0.8	< 0.2	< 0.2	1.8
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	36	-	26	23
Copper (aqua regia extractable)	mg/kg	1	MCERTS	99	120	10	14	160
Lead (aqua regia extractable)	mg/kg	1	MCERTS	180	820	7.4	4.8	180
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.3	0.6	< 0.3	< 0.3	2.8
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	21	23	3.9	4.6	40
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	1.7
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	32	-	5.7	-	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	230	310	6.0	58	530

Your Order No: 34146

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied				
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0

Petroleum Hydrocarbons

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied				
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
TPH-CWG - Aliphatic >EC5 - EC6		0.001	MCERTS	_	1			. 0.001
TPH-CWG - Aliphatic >EC5 - EC6 TPH-CWG - Aliphatic >EC6 - EC8	mg/kg mg/kg	0.001	MCERTS	-	-	-		< 0.001 < 0.001
TPH-CWG - Aliphatic >EC6 - EC8 TPH-CWG - Aliphatic >EC8 - EC10	mg/кg mg/kg	0.001	MCERTS	-	-		<u> </u>	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS					< 1.0
TPH-CWG - Aliphatic >EC10 - EC12 TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS					8.1
TPH-CWG - Aliphatic >EC12 - EC10	mg/kg	8	MCERTS	-				35
TPH-CWG - Aliphatic >EC16 - EC21 TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS		-			67
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS		_			110
THE CASE AMPHAGE (200 2005)	mg/kg	10	HCERTS					110
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	_	-	_	-	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	-	-	-	-	7.9
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	200
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	-	-	-	1100
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	-	-	-	-	910
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	2200
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	-
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	-
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	-
TPH (C10 - C12)	mg/kg	2	MCERTS	40	3.8	< 2.0	< 2.0	-
TPH (C12 - C16)	mg/kg	4	MCERTS	21	14	< 4.0	< 4.0	-
TPH (C16 - C21)	mg/kg	1	MCERTS	67	47	< 1.0	10	-
TPH (C21 - C35)	mg/kg	1	MCERTS	170	110	< 1.0	78	-
TPH (C35 - C40)	mg/kg	10	MCERTS	42	22	< 10	< 10	-
TPH Total C5 - C40	mg/kg	10	MCERTS	390	200	< 10	91	-

Combine Report Ryebank Chorlton

Project / Site name: Ryebank Chorlto	'n
Your Order No: 34146	

Lab Sample Number				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied				
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chloroethane	μg/kg	1	NONE	-	-	-	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane	μg/kg μg/kg	1	MCERTS	-		-		< 1.0 < 1.0
2,2-Dichloropropane	μg/kg μg/kg	1	MCERTS	-		-	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	_	_	_	_	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
Benzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene Toluene	μg/kg μg/kg	1	ISO 17025 MCERTS	-		-	-	< 1.0 < 1.0
1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS	-	-	-		< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	_		-		< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	_	_	_	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	-	-	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0 < 1.0
Bromobenzene	μg/kg μg/kg	1	MCERTS MCERTS	-	-	-	-	< 1.0
n-Propylbenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	_	_	_	_	< 1.0
4-Chlorotoluene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Butylbenzene 1,2-Dibromo-3-chloropropane	μg/kg μα/ka	1	MCERTS ISO 17025	-	-	-	-	< 1.0
1,2-Dibromo-3-chioropropane 1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	-	-		< 1.0 < 1.0
Hexachlorobutadiene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	-	-	-	< 1.0
-,-,	P9/ N9		100 17023					- 1.0

				1386182	1386183	1386184	1386186	1386187
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number				None Supplied				
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken	1	1	1	None Supplied				
		Δ.	Accreditation Status					
Analytical Parameter	Units	Limit of detection	e Sta					
(Soil Analysis)	द्ध	Cti of	itat					
		5 7	ion					
SVOCs								
Aniline	mg/kg	0.1	NONE	_	_	_	_	< 0.1
Phenol	mg/kg	0.1	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	_	_	_	_	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Nitrobenzene 4-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3 < 0.2
4-Methylphenol Isophorone	mg/kg mg/kg	0.2	NONE MCERTS	-	-	-	-	< 0.2 < 0.2
2-Nitrophenol	mg/kg	0.2	MCERTS		-	-	-	< 0.2
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	_		-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	_	_	_	_	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	_	-	_	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Methylnaphthalene 2-Chloronaphthalene	mg/kg mg/kg	0.1	NONE MCERTS	-	-	-	-	0.5 < 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-	_	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	_	_	_	_	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	0.62
Acenaphthene	mg/kg	0.05	MCERTS	-	-	-	-	5.7
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	3.6
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	9.1
Azobenzene Promonhonyl phonyl othor	mg/kg	0.3	MCERTS	-		-	-	< 0.3
Bromophenyl phenyl ether Hexachlorobenzene	mg/kg mg/kg	0.2	MCERTS MCERTS	-	-	-	-	< 0.2
Phenanthrene	mg/kg	0.05	MCERTS	-		-	-	55
Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	17
Carbazole	mg/kg	0.3	MCERTS	-	-	-	-	4.1
Dibutyl phthalate	mg/kg	0.2	MCERTS	_	_	<u>-</u>	_	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	-	-	-	1.8
Fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	53
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	42
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	19
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	16
Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg	0.05	MCERTS MCERTS	-	-	-	-	14
Benzo(a)pyrene	mg/kg mg/kg	0.05	MCERTS	-	-	-	-	6.9 13
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	7.5
		0.05	MCERTS	_	_	_	_	2.1
Dibenz(a,h)anthracene	mg/kg	0,05	MCERTS					

Lab Sample Number			1386182	1386183	1386184	1386186	1386187	
Sample Reference				TP103	TP105	TP111	TP115	TP116
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				1.30	0.10	1.20	1.60	1.50
Date Sampled				04/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Lab Sample Number				1386189	1386190	1386191	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	13	23	22	36
Total mass of sample received	kg	0.001	NONE	0.39	0.38	0.30	0.41	0.31
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile & Amosite	Chrysotile	-
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Not-detected	Detected	Detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	1.183	0.036	-
Asbestos Quantification Total	%	0.001	ISO 17025		-	1.18	0.036	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	-	-	U/S	9.0	12.4
Total Cyanide	mg/kg	1	MCERTS	1	6	2	1	3
Total Sulphate as SO ₄	mg/kg	50	MCERTS		-	U/S	4900	3500
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-	-	-	-	-
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-	-	-	-	-
Equivalent)	ma/l	1.25	MCERTS	_	_	_	_	_
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	-	U/S	0.97	0.055
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	-	U/S	1900	110
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	-	U/S	966	55.3
Sulphide	mg/kg	1	MCERTS	-	-	U/S	470	19
Total Sulphur	mg/kg	50	MCERTS	-	-	U/S	17000	1600
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.9	-	U/S	3.2	-
5	•	-		-		-1-		•
Total Phenols								

Lab Sample Number				1386189	1386190	1386191	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied				
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	-	0.45	-	-	0.61
Acenaphthylene	mg/kg	0.05	MCERTS	-	0.47	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	2.8	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	-	2.7	-	-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	-	19	-	-	0.23
Anthracene	mg/kg	0.05	MCERTS	-	5.4	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	-	25	-	-	0.33
Pyrene	mg/kg	0.05	MCERTS	-	21	-	-	0.29
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	10	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	8.7	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	11	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	3.9	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	8.9	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	3.8	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	1.1	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	4.4	-	-	< 0.05
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	127	-	-	1.46
Total PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	-	127	-	-	1.46

Lab Sample Number				1386189	1386190	1386191	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied				
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken		None Supplied						
Analytical Parameter (Soil Analysis)								
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	18	U/S	34	1.4
Barium (aqua regia extractable)	mg/kg	1	MCERTS	350	380	-	-	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1	0.98	-	-	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.5	1.2	U/S	3.3	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS		-	U/S	43	6.0
Copper (aqua regia extractable)	mg/kg	1	MCERTS	130	2600	U/S	400	14
Lead (aqua regia extractable)	mg/kg	1	MCERTS	230	460	U/S	1100	16
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.6	U/S	1.0	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	25	U/S	58	6.2
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1.1	U/S	2.1	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	34	28	-	-	-
Zinc (agua regia extractable)	mg/kg	1	MCERTS	260	760	U/S	1600	23

Your Order No: 34146

Lab Sample Number				1386189	1386190	1386191	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied				
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled	Date Sampled					04/12/2019	04/12/2019	04/12/2019
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis)								
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Toluene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
p & m-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
o-xylene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0	-

Petroleum Hydrocarbons

Lab Sample Number				1386189	1386190	1386191	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied				
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	_	_	< 0.001	_
TPH-CWG - Aliphatic > EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	_	< 0.001	-
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	_	_	< 0.001	_
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	2.5	-	_	13	-
TPH-CWG - Aliphatic > EC12 - EC16	mg/kg	2	MCERTS	11	-	-	20	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	25	-	-	76	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	49	-	_	450	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	88	-	-	560	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	5.5	-	-	6.2	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	41	-	-	34	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	110	-	-	180	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	250	-	-	510	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	410	-	-	730	-
TPH (C5 - C6)	mg/kg	1	NONE	-	< 1.0	< 1.0	-	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	< 0.1	-	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	-	2.3	U/S	-	< 2.0
TPH (C12 - C16)	mg/kg	4	MCERTS	-	22	U/S	-	< 4.0
TPH (C16 - C21)	mg/kg	1	MCERTS	-	150	U/S	-	7.9
TPH (C21 - C35)	mg/kg	1	MCERTS	-	460	U/S	-	85
TPH (C35 - C40)	mg/kg	10	MCERTS	-	47	U/S	-	< 10
TPH Total C5 - C40	mg/kg	10	MCERTS	-	680	< 10	-	95

Lab Sample Number		1386189	1386190	1386191	1386192	1386193		
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	< 1.0	_
Chloroethane	μg/kg	1	NONE	< 1.0	_	< 1.0	< 1.0	_
Bromomethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
2,2-Dichloropropane Trichloromethane	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
1,1,1-Trichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
1,2-Dichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0		< 1.0	< 1.0	_
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	_	< 1.0	< 1.0	_
Benzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Trichloroethene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Dibromomethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Bromodichloromethane	μg/kg 	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0 < 1.0	-	< 1.0	< 1.0	-
Trans-1,3-dichloropropene Toluene	μg/kg μg/kg	1	ISO 17025 MCERTS	< 1.0		< 1.0	< 1.0	-
1,1,2-Trichloroethane	μg/kg μg/kg	1	MCERTS	< 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0		< 1.0	< 1.0	
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	< 1.0	-
Tetrachloroethene	μg/kg	1	NONE	< 1.0	-	< 1.0	< 1.0	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Styrene	μg/kg 	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
Tribromomethane	μg/kg	1	NONE	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0	-
o-Xylene 1,1,2,2-Tetrachloroethane	μg/kg μg/kg	1	MCERTS MCERTS	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
Isopropylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0		< 1.0	< 1.0	-
Bromobenzene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	< 1.0	_
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0		< 1.0	< 1.0	-
1,2-Dichlorobenzene 1,4-Dichlorobenzene	μg/kg	1	MCERTS MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,4-Dichlorobenzene Butylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0 < 1.0	-	< 1.0 < 1.0	< 1.0 < 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	< 1.0	_
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	< 1.0	-
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	< 1.0	-

Lab Sample Number				1386189	1386190	1386191	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled				05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019
Time Taken	1	1	1	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	< 0.1	-	U/S	< 0.1	-
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	U/S	< 0.2	-
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
1,4-Dichlorobenzene Bis(2-chloroisopropyl)ether	mg/kg	0.2	MCERTS MCERTS	< 0.2 < 0.1	-	U/S U/S	< 0.2 < 0.1	-
2-Methylphenol	mg/kg mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	U/S	< 0.05	-
Nitrobenzene	mg/kg	0.03	MCERTS	< 0.3	-	U/S	< 0.3	-
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	U/S	< 0.2	-
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Naphthalene	mg/kg	0.05	MCERTS	5.1	-	U/S	1.4	-
2,4-Dichlorophenol 4-Chloroaniline	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Hexachlorobutadiene	mg/kg mg/kg	0.1	NONE MCERTS	< 0.1 < 0.1	<u> </u>	U/S U/S	< 0.1 < 0.1	-
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	U/S	< 0.1	-
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
2-Methylnaphthalene	mg/kg	0.1	NONE	4.0	-	U/S	0.7	-
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	U/S	< 0.1	-
Acenaphthylene	mg/kg	0.05	MCERTS	2.4	-	U/S	0.61	-
Acenaphthene	mg/kg	0.05	MCERTS	4.6	-	U/S	3.0	-
2,4-Dinitrotoluene Dibenzofuran	mg/kg	0.2	MCERTS MCERTS	< 0.2 3.0	-	U/S U/S	< 0.2 1.1	-
4-Chlorophenyl phenyl ether	mg/kg mg/kg	0.2	ISO 17025	< 0.3	-	U/S	< 0.3	-
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	_	U/S	< 0.2	_
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
Fluorene	mg/kg	0.05	MCERTS	5.7	-	U/S	3.6	-
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	-	U/S	< 0.2	-
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	U/S	< 0.3	-
Phenanthrene	mg/kg	0.05	MCERTS	24	-	U/S	19	-
Anthracene	mg/kg	0.05	MCERTS	7.5	-	U/S	5.6	-
Carbazole Dibutyl phthalate	mg/kg	0.3	MCERTS MCERTS	2.3 < 0.2		U/S U/S	1.1 < 0.2	-
Anthraguinone	mg/kg mg/kg	0.2	MCERTS	< 0.3	-	U/S	0.9	-
Fluoranthene	mg/kg	0.05	MCERTS	27	-	U/S	25	-
Pyrene	mg/kg	0.05	MCERTS	22	-	U/S	21	-
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	U/S	< 0.3	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	12	-	U/S	9.6	-
Chrysene	mg/kg	0.05	MCERTS	9.2	-	U/S	9.9	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	10	-	U/S	8.5	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	5.9	-	U/S	4.8	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	9.7	-	U/S	7.6	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	4.1	-	U/S	4.4	-
Dibenz(a,h)anthracene Benzo(ghi)perylene	mg/kg	0.05	MCERTS MCERTS	1.1 4.6	-	U/S U/S	1.4 4.6	-
Incurso(Auth)het Aictie	mg/kg	0.05	MCERTS	ט.ד		U/3	ט.ד	

Lab Sample Number				1386189	1386190	1386191	1386192	1386193
Sample Reference				TP127	TP128	WS101	WS102	WS105
Sample Number				None Supplied				
Depth (m)				1.80	0.80	1.80	3.20	3.80
Date Sampled	05/12/2019	05/12/2019	04/12/2019	04/12/2019	04/12/2019			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis) Accreditation Accreditation Status Units								

Lab Sample Number				1386194	1389778	1389779	1389780	1389781
Sample Reference				WS112	TP101	TP113	TP119	TP120
Sample Number				None Supplied				
Depth (m)				2.30	0.10	0.10	0.10	2.10
Date Sampled				05/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	14	39	23	14	17
Total mass of sample received	kg	0.001	NONE	0.41	0.33	0.31	0.34	0.36
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	Chrysotile	-	-	-	-
Asbestos in Soil	Туре	N/A	ISO 17025	Detected	Not-detected	Not-detected	Not-detected	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	0.014	-	-	-	-
Asbestos Quantification Total	%	0.001	ISO 17025	0.014	-	-	-	-
General Inorganics pH - Automated	pH Units	N/A	MCERTS	-	-	-	-	10.3
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	2	120	2
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-	-	-	1100
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-	-	-	-	250
Equivalent)	g/l	0.00125	MCERTS	1	-	-	-	0.13
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	1	-	-	-	125
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	-	-	-	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	-	-	-	-
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	-	-	-	-
Sulphide	mg/kg	1	MCERTS	-	-	-	-	2.3
Total Sulphur	mg/kg	50	MCERTS		-	-	-	1300
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.1	-	-	-	-
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	_	_	_	_	< 1.0

Lab Sample Number				1386194	1389778	1389779	1389780	1389781
Sample Reference				WS112	TP101	TP113	TP119	TP120
Sample Number				None Supplied				
Depth (m)				2.30	0.10	0.10	0.10	2.10
Date Sampled				05/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Speciated PAHs					•			
Naphthalene	mg/kg	0.05	MCERTS	0.94	0.54	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	11	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	0.35	< 0.05	2.4	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.39	< 0.05	17	-
Phenanthrene	mg/kg	0.05	MCERTS	0.54	3.1	0.81	150	-
Anthracene	mg/kg	0.05	MCERTS	0.11	0.90	0.25	46	-
Fluoranthene	mg/kg	0.05	MCERTS	0.51	5.1	1.7	150	-
Pyrene	mg/kg	0.05	MCERTS	0.54	5.2	1.8	130	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.29	2.4	0.91	44	-
Chrysene	mg/kg	0.05	MCERTS	0.27	2.3	1.0	37	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	0.31	3.0	1.1	50	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	0.14	0.98	0.59	15	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.22	2.5	1.1	45	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	1.3	0.51	30	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	0.44	0.20	7.2	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	1.5	0.58	25	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	3.87	30.0	10.6	763	-

Lab Sample Number				1386194	1389778	1389779	1389780	1389781
Sample Reference				WS112	TP101	TP113	TP119	TP120
Sample Number				None Supplied				
Depth (m)				2.30	0.10	0.10	0.10	2.10
Date Sampled				05/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)								
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	13	17	23	32
Barium (aqua regia extractable)	mg/kg	1	MCERTS	780	200	150	440	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	5.0	0.64	0.79	1.2	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	2.0	0.7	0.4	1.6	0.4
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-	-	-	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	320	150	72	620	160
Lead (aqua regia extractable)	mg/kg	1	MCERTS	110	220	180	1000	680
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	0.5	0.7	1.4	1.0
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	80	14	17	27	33
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	3.8	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	100	16	21	32	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	2500	320	130	1000	280

Your Order No: 34146

Lab Sample Number				1386194	1389778	1389779	1389780	1389781
Sample Reference				WS112	TP101	TP113	TP119	TP120
Sample Number				None Supplied				
Depth (m)	2.30	0.10	0.10	0.10	2.10			
Date Sampled	05/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019			
Time Taken	None Supplied							
Analytical Parameter (Soil Analysis) Accreditation Status Units Units								
Monoaromatics & Oxygenates								
Benzene	μg/kg	1	MCERTS	-	-	-	-	-
Toluene	μg/kg	1	MCERTS	-	-	-	-	-
Ethylbenzene	μg/kg	1	MCERTS	-	-	-	-	-
p & m-xylene	μg/kg	1	MCERTS	-	-	-	-	-
o-xylene	μg/kg	1	MCERTS	-	-	-	-	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS		-		-	-

Petroleum Hydrocarbons

Lab Sample Number				1386194	1389778	1389779	1389780	1389781
Sample Reference				WS112	TP101	TP113	TP119	TP120
Sample Number				None Supplied				
Depth (m)				2.30	0.10	0.10	0.10	2.10
Date Sampled				05/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	_	_		_	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	_	_	_	_	_
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	_	_	_	_	_
	1119/119		HOLKIO					
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	_	-	-	-	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	_	-	-	-	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	_	-	-	-	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-	-	-	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	_	-	-	-	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	_	-	-	-	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-	-	-	-
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH (C10 - C12)	mg/kg	2	MCERTS	4.4	5.6	3.7	6.3	12
TPH (C12 - C16)	mg/kg	4	MCERTS	9.6	13	16	220	40
TPH (C16 - C21)	mg/kg	1	MCERTS	33	44	51	1700	140
TPH (C21 - C35)	mg/kg	1	MCERTS	85	110	110	1300	230
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	19	20	40	18
TPH Total C5 - C40	mg/kg	10	MCERTS	140	200	200	3300	460

Lab Sample Number		1386194	1389778	1389779	1389780	1389781		
Sample Reference				WS112	TP101	TP113	TP119	TP120
Sample Number				None Supplied				
Depth (m)				2.30	0.10	0.10	0.10	2.10
Date Sampled				05/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	-	_	_	_	< 1.0
Chloroethane	μg/kg	1	NONE	-	_	_	_	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	-	-	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	-	-	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Trichloromethane 1,1,1-Trichloroethane	μg/kg	1	MCERTS MCERTS	-	-	-	-	< 1.0
	μg/kg	1	MCERTS		-	-		< 1.0
1,2-Dichloroethane 1,1-Dichloropropene	μg/kg μg/kg	1	MCERTS		-	-	-	< 1.0
Trans-1,2-dichloroethene	μg/kg μg/kg	1	NONE		-		<u> </u>	< 1.0 < 1.0
Benzene	μg/kg μg/kg	1	MCERTS	-		-		< 1.0
Tetrachloromethane	μg/kg μg/kg	1	MCERTS	_	_	_	_	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	_	_	_	_	< 1.0
Trichloroethene	μg/kg	1	MCERTS	-	_	-	_	< 1.0
Dibromomethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	-	-	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,1,2-Tetrachloroethane Ethylbenzene	μg/kg	1	MCERTS	-		-	-	< 1.0
p & m-Xylene	μg/kg μg/kg	1	MCERTS MCERTS	-		-		< 1.0 < 1.0
Styrene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
Tribromomethane	μg/kg μg/kg	1	NONE	_	-	_	-	< 1.0
o-Xylene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
tert-Butylbenzene	μg/kg 	1	MCERTS	-	-	-	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg 	1	ISO 17025	-	-	-	-	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	-	-	-	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	-	-	-	< 1.0
1,2-Dichlorobenzene 1,4-Dichlorobenzene	μg/kg	1	MCERTS MCERTS	-		-		< 1.0 < 1.0
Butylbenzene	μg/kg μg/kg	1	MCERTS	-	-	-	-	< 1.0
المارية								
		1	ISO 17025	-	-	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025 MCERTS	-	-	-	-	< 1.0 < 1.0
		1 1 1	ISO 17025 MCERTS MCERTS					< 1.0 < 1.0 < 1.0

								-
Lab Sample Number				1386194	1389778	1389779	1389780	1389781
Sample Reference				WS112	TP101	TP113	TP119	TP120
Sample Number				None Supplied				
Depth (m)				2.30	0.10	0.10	0.10	2.10
Date Sampled Time Taken				05/12/2019 None Supplied	04/12/2019 None Supplied	05/12/2019 None Supplied	05/12/2019 None Supplied	05/12/2019 None Supplied
Time Taken	1	1	1	None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	_	_	_	_	< 0.1
Phenol	mg/kg	0.2	ISO 17025	-	-	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3 < 0.2
4-Methylphenol	mg/kg	0.2	NONE MCERTS	-	-	-	-	< 0.2
Isophorone 2-Nitrophenol	mg/kg mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2,4-Dimethylphenol	mg/kg	0.3	MCERTS		_	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	_	_	_	_	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	-	-	-	0.61
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	-	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-	-	-	0.7
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-	-	-	< 0.1 < 0.1
Dimethylphthalate 2,6-Dinitrotoluene	mg/kg mg/kg	0.1	MCERTS MCERTS	-	-	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	-	-	-	-	0.72
Acenaphthene	mg/kg	0.05	MCERTS	_	-	_	-	0.94
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	-	_	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	-	-	-	0.5
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	-	-	-	1.5
Azobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-	-	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-	-	-	< 0.3
Phenanthrene Anthracene	mg/kg	0.05	MCERTS	-	-	-	-	11
Anthracene	mg/kg	0.05	MCERTS	-	-		-	2.0
Carbazole Dibutyl phthalate	mg/kg	0.3	MCERTS MCERTS	-	-	-	-	0.4 < 0.2
Anthraquinone	mg/kg mg/kg	0.2	MCERTS	-	-	-	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	_	-	_	-	14
Pyrene	mg/kg	0.05	MCERTS	-	-	-	-	14
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	-	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	6.8
Chrysene	mg/kg	0.05	MCERTS	-	-	-	-	5.5
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	6.6
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	-	-	2.5
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	5.6
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	-	-	2.8
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	-	-	1.0
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	-	-	3.6

Lab Sample Number						1389779	1389780	1389781
Sample Reference	WS112	TP101	TP113	TP119	TP120			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	2.30	0.10	0.10	0.10	2.10			
Date Sampled	05/12/2019	04/12/2019	05/12/2019	05/12/2019	05/12/2019			
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					

Lab Sample Number				1389782	1389783		
Sample Reference				TP125	WS110		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.10	0.50		
Date Sampled				05/12/2019	05/12/2019		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	30	11		
Total mass of sample received	kg	0.001	NONE	0.38	0.36		
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile		
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Detected		
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	< 0.001		
Asbestos Quantification Total	%	0.001	ISO 17025	-	< 0.001		
General Inorganics pH - Automated	pH Units	N/A	MCERTS	-	-		
Total Cyanide	mg/kg	1	MCERTS	< 1	-		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	-	-		
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	-	-		
Equivalent)	g/l	0.00125	MCERTS	-	-		
Water Soluble SO4 16hr extraction (2:1 Leachate		4.05	MOTOTO				
Equivalent)	mg/l	1.25	MCERTS	-	-	1	1
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	g/l	0.00125	MCERTS	_	_		
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/kg	2.5	MCERTS	-	_		
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction	mg/l	1.25	MCERTS	-	-		
Sulphide	mg/kg	1	MCERTS	-	-		
Total Sulphur	mg/kg	50	MCERTS	-	-		
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	1.6		
Total Phenols							

Lab Sample Number				1389782	1389783		
Sample Reference				TP125	WS110		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.10	0.50		
Date Sampled				05/12/2019	05/12/2019		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	0.32		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	0.24		
Phenanthrene	mg/kg	0.05	MCERTS	3.1	1.3		
Anthracene	mg/kg	0.05	MCERTS	0.90	0.36		
Fluoranthene	mg/kg	0.05	MCERTS	5.8	1.7		
Pyrene	mg/kg	0.05	MCERTS	5.7	1.5		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	2.5	1.2		
Chrysene	mg/kg	0.05	MCERTS	2.6	0.82		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	3.3	0.77		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	1.2	0.50		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	2.8	0.66		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	1.5	0.33		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.42	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	1.7	0.40		
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	31.3	10.0		

Lab Sample Number				1389782	1389783		1	
Sample Reference				TP125	WS110		 	
Sample Number				None Supplied	None Supplied			
Depth (m)				0.10	0.50			
Date Sampled				05/12/2019	05/12/2019			
Time Taken	None Supplied	None Supplied						
Analytical Parameter (Soil Analysis) Accreditation Accreditation Status Units								
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	-			
Barium (aqua regia extractable)	mg/kg	1	MCERTS	250	-			
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.0	-			
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	0.6	-			
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	-			
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	-			
Copper (aqua regia extractable)	mg/kg	1	MCERTS	110	-			
Lead (aqua regia extractable)	mg/kg	1	MCERTS	230	-			
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	-	, and the second		
ickel (aqua regia extractable) mg/kg 1 MCERTS		23	-					
elenium (aqua regia extractable) mg/kg 1 MCERTS		< 1.0	-	, and the second				
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	28	-			
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	200	-	, and the second		

Your Order No: 34146

Lab Sample Number				1389782	1389783		
Sample Reference				TP125	WS110		
Sample Number				None Supplied	None Supplied		
Depth (m)	0.10	0.50					
Date Sampled	05/12/2019	05/12/2019					
Time Taken	None Supplied	None Supplied					
Analytical Parameter (Soil Analysis) Accreditation Status Units							
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	-	-		
Toluene	μg/kg	1	MCERTS	-	-		
Ethylbenzene	μg/kg	1	MCERTS	-	-	·	
m-xylene µg/kg 1 MCERTS		-	-	·			
o-xylene			-	-	·		
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS		•		

Petroleum Hydrocarbons

Lab Sample Number				1389782	1389783		
Sample Reference				TP125	WS110		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.10	0.50		
Date Sampled				05/12/2019	05/12/2019		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	_	_	1	
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	_	_	İ	i
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	_	_		
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	1	MCERTS	_	_		
TPH-CWG - Aliphatic > EC12 - EC16	mg/kg	2	MCERTS	_	_		
TPH-CWG - Aliphatic > EC16 - EC21	mg/kg	8	MCERTS	_	_		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	_	_		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	_	-		
	313						
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	-	_		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	_		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	_	_		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	_	-		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	-	-		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	_	-		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	_	-		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	-	-		
TPH (C5 - C6)	mg/kg	1	NONE	< 1.0	< 1.0		
TPH (C6 - C8)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH (C8 - C10)	mg/kg	0.1	MCERTS	< 0.1	< 0.1		
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	8.2		
TPH (C16 - C21)	mg/kg	1	MCERTS	15	27		
TPH (C21 - C35)	mg/kg	1	MCERTS	27	44		
TPH (C35 - C40)	mg/kg	10	MCERTS	< 10	< 10		
TPH Total C5 - C40	mg/kg	10	MCERTS	43	81		

Sample Reference								
Sample Number	Lab Sample Number				1389782	1389783		
Depth (m)								
Septime Sept	<u> </u>							
Triber Tarken								
Analytical Parameter (Soil Analysis) Wock Differentiable 1	Time Taken							
Officerorethane				>				
Officerorethane	Analytical Parameter (Soil Analysis)	Units	Limit of detection	ccreditati Status				
District Park Park 1 S0 37025			_	9				
1999 1 NORE	VOCs							
Stromomethane	Chloromethane		1		-	-		
Varied Choice 19-96 1 None								
Inchronordanae						8		
1,1 Finchinoroethene								
1,1,2-17(n)forostane								
15-12-dichioroptene								
MTBE (Methy) Testary Buly Ether)	Cis-1,2-dichloroethene				-			
2,2 Dichloropropane	MTBE (Methyl Tertiary Butyl Ether)				-	-		
	1,1-Dichloroethane							
1.1.1-Trichloroethane	2,2-Dichloropropane							
1,2-Dickhorperhape								
1,1-Dichlorpropene								
Trans-1,2-dichlororethene								
Велееле ра/га 1 МСЕRTS -								
Tetrachforomethane					-			
Trichloroethene	Tetrachloromethane				-	-		
Dibrommethane	1,2-Dichloropropane	μg/kg	1	MCERTS	-	-		
Romodichloromethane	Trichloroethene					-		
1 150 17025 -						-		
Trans-1,3-dichloropropene								
Toluene								
1,1,2-Trichloroethane								
1,3-Dichloropropane								
Dibromochloromethane μg/kg 1 SO 17025 -	1,3-Dichloropropane				-			
1,2-Dibromoethane	Dibromochloromethane		1	ISO 17025	-	-		
Li, 1, 1, 2-Tetrachloroethane	Tetrachloroethene	μg/kg	1		-	-		
1,1,1,2-Tetrachloroethane	1,2-Dibromoethane					-		
Ethylbenzene								
p & m-Xylene μg/kg 1 MCERTS - - Styrene μg/kg 1 MCERTS - - Tribromomethane μg/kg 1 NONE - - D-Sylene μg/kg 1 MCERTS - - 1,1,2,2-Tetrachloroethane μg/kg 1 MCERTS - - Isopropylbenzene μg/kg 1 MCERTS - - - Bromobenzene μg/kg 1 MCERTS -								
Styrene μg/kg 1 MCERTS - -	,							
Tribromomethane								
December 1,1,2,2-Tetrachloroethane	Tribromomethane							
1,1,2,2-Tetrachloroethane	o-Xylene					_		
Promobenzene μg/kg 1 MCERTS - -	1,1,2,2-Tetrachloroethane		1		-	-		
n-Propylbenzene	Isopropylbenzene					8		
2-Chlorotoluene μg/kg 1 MCERTS - - 4-Chlorotoluene μg/kg 1 MCERTS - - 1,3,5-Trimethylbenzene μg/kg 1 ISO 17025 - - tert-Butylbenzene μg/kg 1 MCERTS - - - 1,2,4-Trimethylbenzene μg/kg 1 ISO 17025 - - - - sec-Butylbenzene μg/kg 1 MCERTS -	Bromobenzene							ļ
4-Chlorotoluene μg/kg 1 MCERTS								
1,3,5-Trimethylbenzene µg/kg 1 ISO 17025 -								
Lert-Butylbenzene μg/kg 1 MCERTS - - 1,2,4-Trimethylbenzene μg/kg 1 ISO 17025 - - sec-Butylbenzene μg/kg 1 MCERTS - - 1,3-Dichlorobenzene μg/kg 1 ISO 17025 - - p-Isopropyltoluene μg/kg 1 ISO 17025 - - - 1,2-Dichlorobenzene μg/kg 1 MCERTS - - - - 1,4-Dichlorobenzene μg/kg 1 MCERTS - <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>								
1,2,4-Trimethylbenzene µg/kg 1 ISO 17025 - - sec-Butylbenzene µg/kg 1 MCERTS - - Ja,3-Dichlorobenzene µg/kg 1 ISO 17025 - - p-Isopropyltoluene µg/kg 1 ISO 17025 - - 1,2-Dichlorobenzene µg/kg 1 MCERTS - - 1,4-Dichlorobenzene µg/kg 1 MCERTS - - Butylbenzene µg/kg 1 MCERTS - - Butylbenzene µg/kg 1 ISO 17025 - - 1,2-Dirbinono-3-chloropropane µg/kg 1 ISO 17025 - - 1,2,4-Trichlorobenzene µg/kg 1 MCERTS - - - Hexachlorobutadiene µg/kg 1 MCERTS - - -								
μg/kg 1 MCERTS - -	1,2,4-Trimethylbenzene							
p-Isopropyltoluene μg/kg 1 ISO 17025	sec-Butylbenzene					-		
1,2-Dichlorobenzene μg/kg 1 MCERTS - - 1,4-Dichlorobenzene μg/kg 1 MCERTS - - Butylbenzene μg/kg 1 MCERTS - - 1,2-Dibromo-3-chloropropane μg/kg 1 ISO 17025 - - 1,2,4-Trichlorobenzene μg/kg 1 MCERTS - - Hexachlorobutadiene μg/kg 1 MCERTS - -	1,3-Dichlorobenzene	μg/kg	1		-	-		
1,4-Dichlorobenzene μg/kg 1 MCERTS - - Butylbenzene μg/kg 1 MCERTS - - 1,2-Dibromo-3-chloropropane μg/kg 1 ISO 17025 - - 1,2,4-Trichlorobenzene μg/kg 1 MCERTS - - Hexachlorobutadiene μg/kg 1 MCERTS - -	p-Isopropyltoluene	μg/kg						
Butylbenzene μg/kg 1 MCERTS - - 1,2-Dibromo-3-chloropropane μg/kg 1 ISO 17025 - - 1,2,4-Trichlorobenzene μg/kg 1 MCERTS - - Hexachlorobutadiene μg/kg 1 MCERTS - -	1,2-Dichlorobenzene							
1,2-Dibromo-3-chloropropane µg/kg 1 ISO 17025 - - 1,2,4-Trichlorobenzene µg/kg 1 MCERTS - - Hexachlorobutadiene µg/kg 1 MCERTS - -								
1,2,4-Trichlorobenzene µg/kg 1 MCERTS							 	
Hexachlorobutadiene µg/kg 1 MCERTS					-			
					-			
	1,2,3-Trichlorobenzene							

Lab Sample Number				1389782	1389783		
Sample Reference				TP125	WS110		
Sample Number				None Supplied	None Supplied		
Depth (m)				0.10	0.50		
Date Sampled				05/12/2019	05/12/2019		
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
SVOCs							
Aniline	mg/kg	0.1	NONE	_	_		
Phenol	mg/kg	0.2	ISO 17025	-	-		
2-Chlorophenol	mg/kg	0.1	MCERTS	-	-		
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	-		
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-		
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	-		
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	-		
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	-		
2-Methylphenol	mg/kg	0.3	MCERTS	-	-		
Hexachloroethane	mg/kg	0.05	MCERTS	-	-	ļ	
Nitrobenzene	mg/kg	0.3	MCERTS	-	-		
4-Methylphenol	mg/kg	0.2	NONE	-	-	 	
Isophorone	mg/kg	0.2	MCERTS	-		-	
2-Nitrophenol	mg/kg	0.3	MCERTS				
2,4-Dimethylphenol Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS MCERTS	-	-		
1,2,4-Trichlorobenzene	mg/kg mg/kg	0.3	MCERTS				
Naphthalene	mg/kg	0.05	MCERTS	-	-		
2,4-Dichlorophenol	mg/kg	0.03	MCERTS	_	-		
4-Chloroaniline	mg/kg	0.1	NONE	_	-		
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	-		
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	-		
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	-		
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	-		
2-Methylnaphthalene	mg/kg	0.1	NONE	-	-		
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	-		
Dimethylphthalate	mg/kg	0.1	MCERTS	-	-		
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	-	-		
Acenaphthylene	mg/kg	0.05	MCERTS	-	-		
Acenaphthene	mg/kg	0.05	MCERTS	-	-		
2,4-Dinitrotoluene Dibenzofuran	mg/kg	0.2	MCERTS MCERTS	-	-		
4-Chlorophenyl phenyl ether	mg/kg mg/kg	0.2	ISO 17025		-		
Diethyl phthalate	mg/kg	0.3	MCERTS	-		1	
4-Nitroaniline	mg/kg	0.2	MCERTS	-	-	l	
Fluorene	mg/kg	0.05	MCERTS	-	-		
Azobenzene	mg/kg	0.3	MCERTS	-	-	Ì	
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	-		
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	-		
Phenanthrene	mg/kg	0.05	MCERTS	-	-		
Anthracene	mg/kg	0.05	MCERTS	-	-	<u> </u>	
Carbazole	mg/kg	0.3	MCERTS	-	-		
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	-		
Anthraquinone	mg/kg	0.3	MCERTS	-	-	 	
Fluoranthene	mg/kg	0.05	MCERTS	-	-	 	
Pyrene	mg/kg	0.05	MCERTS	-	-	-	
Butyl benzyl phthalate Benzo(a)anthracene	mg/kg	0.3	ISO 17025 MCERTS	-	-	1	1
Chrysene	mg/kg	0.05	MCERTS	-	-	1	
Benzo(b)fluoranthene	mg/kg mg/kg	0.05	MCERTS	-	-		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	1	
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	l	
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	Ì	
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-		
	J						

Lab Sample Number							
Sample Reference	TP125	WS110					
Sample Number	None Supplied	None Supplied					
Depth (m)	0.10	0.50					
Date Sampled	05/12/2019	05/12/2019					
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				

Project / Site name: Ryebank Chorlton

Your Order No: 34146

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006 based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1386191	WS101	1.80	80	Loose Fibrous Debris	Chrysotile & Amosite	1.183	1.18
1386192	WS102	3.20	120	Bitumen	Chrysotile	0.036	0.036
1386194	WS112	2.30	133	Hard/ Cement Type Material	Chrysotile	0.014	0.014
1389783	WS110	0.50	118	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: Ryebank Chorlton

Your Order No: 34146								
Lab Sample Number				1386195	1386196	1386197	1386198	
Sample Reference	TP103	TP106	WS106	WS111				
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				2.10	1.50	0.80	2.70	
Date Sampled		04/12/2019	04/12/2019	04/12/2019	05/12/2019			
Time Taken	ime Taken						None Supplied	
			V					
	_	de Li	Sch					
Analytical Parameter	Units	mit	tat edit					
(Leachate Analysis)	ស	Limit of detection	Accreditation Status					
			on					
General Inorganics			T	12.6		0.0	12.6	
pH	pH Units	N/A	ISO 17025	12.6	8.2	8.3	12.6	
Total Cyanide (Low Level 1 μg/l)	μg/l	1	ISO 17025	7.4	< 1.0	1.5	5.2	
Total Phenols								
Total Phenols (monohydric)	μg/l	1	ISO 17025	22	4.6	2.0	8.9	
Speciated PAHs								
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Acenaphthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluorene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Phenanthrene	рд/I µд/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Anthracene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Fluoranthene	μg/l μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Pyrene	μg/I μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	рд/I µд/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Chrysene	рд/I µд/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	рд/I µд/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	µg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	μg/I	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/I μg/I	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	-
Dibenz(a,h)anthracene	μg/I μg/I	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/I	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	
on action types yield	HA/1	0.01	HOHE	1 0.01	1 0.01	1 0.01	1 0.01	9
Total PAH							ı	T
Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	l .
Heavy Metals / Metalloids								
Arsenic (dissolved)	μg/l	1.1	ISO 17025	12	5.5	2.0	4.4	
Cadmium (dissolved)	μg/l	0.08	ISO 17025	< 0.08	< 0.08	< 0.08	< 0.08	
Chromium (hexavalent)	μg/l	5	ISO 17025	< 5.0	20	< 5.0	< 5.0	
Chromium (dissolved)	μg/l	0.4	ISO 17025	1.5	0.7	3.1	0.6	
Copper (dissolved)	μg/l	0.7	ISO 17025	14	110	9.0	13	
Lead (dissolved)	μg/l	1	ISO 17025	1.5	9.8	26	< 1.0	
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	< 0.5	
Nickel (dissolved)	μg/l	0.3	ISO 17025	11	7.1	2.0	5.3	
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	
Zinc (dissolved)	μg/l	0.4	ISO 17025	6.4	73	13	2.7	

Project / Site name: Ryebank Chorlton

Lab Sample Number				1386195	1386196	1386197	1386198	
Sample Reference				TP103	TP106	WS106	WS111	
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)	2.10	1.50	0.80	2.70				
Date Sampled	04/12/2019	04/12/2019	04/12/2019	05/12/2019				
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied				
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics & Oxygenates								
Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
		1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	
o-xylene	μg/l							
	µg/I µg/I	10	NONE	< 10	< 10	< 10	< 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether)		10	NONE	< 10	< 10	< 10	< 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40)	μg/l μg/l	10	NONE	< 10	< 10	< 10	< 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6	μg/l μg/l μg/l	10	NONE ISO 17025	< 10	< 10	< 10	< 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic >C5 - C6 TPH-CWG - Aliphatic >C6 - C8	μg/l μg/l μg/l μg/l	10 1 1	NONE ISO 17025 ISO 17025	< 10 < 1.0 < 1.0	< 10 < 1.0 < 1.0	< 10 < 1.0 < 1.0	< 10 < 1.0 < 1.0	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C8 - C10	hā\l hā\l hā\l	10 1 1 1	NONE ISO 17025 ISO 17025 ISO 17025	< 10 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C8 - C10 TPH-CWG - Aliphatic > C10 - C12	рд/I Реч Преч Неч Преч Преч Преч Преч Преч Преч Преч Пр	10 1 1 1 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C8 - C10 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C12 - C16	рд/I рд/I рд/I рд/I рд/I рд/I	10 1 1 1 10 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 TPH-CWG - Aliphatic > C10 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C12 - C16	hā\l hā\l hā\l hā\l hā\l	10 1 1 1 10 10 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C21	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	10 1 1 1 10 10 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C21	hā\l hā\l hā\l hā\l hā\l	10 1 1 1 10 10 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C21	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	10 1 1 1 10 10 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C8 - C10 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C35 TPH-CWG - Aliphatic > C5 - C35)	hā\l ha\l ha\l ha\l ha\l ha\l	10 1 1 1 10 10 10 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE NONE NONE NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C35 TPH-CWG - Aliphatic > C5 - C35	hall hall hall hall hall hall hall hall	10 1 1 1 10 10 10 10 10	NONE ISO 17025 ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE NONE NONE NONE ISO 17025	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 <	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	
O-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aromatic > C5 - C7 TPH-CWG - Aromatic > C7 - C8 TPH-CWG - Aromatic > C8 - C10	hall hall hall hall hall hall hall hall	10 1 1 10 10 10 10 10 10 10	NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE NONE NONE ISO 17025 ISO 17025	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C10 - C21 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aromatic > C2 - C7 TPH-CWG - Aromatic > C3 - C8 TPH-CWG - Aromatic > C3 - C10 TPH-CWG - Aromatic > C3 - C10 TPH-CWG - Aromatic > C3 - C10 TPH-CWG - Aromatic > C10 - C12	ра/I ра/I ра/I ра/I ра/I ра/I ра/I ра/I ра/I ра/I ра/I ра/I ра/I	10 1 1 1 10 10 10 10 10 10 10	ISO 17025 ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE SO 17025 ISO 17025 ISO 17025	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 1.0 < 1.0 < 1.0	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 1.0 < 1.0 < 1.0	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C16 - C21 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aliphatic > C27 - C35 TPH-CWG - Aromatic > C5 - C7 TPH-CWG - Aromatic > C7 - C8 TPH-CWG - Aromatic > C8 - C10 TPH-CWG - Aromatic > C10 - C12 TPH-CWG - Aromatic > C12 - C16	hall hall hall hall hall hall hall hall	10 1 1 1 10 10 10 10 10 10 10	ISO 17025 ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE 1SO 17025 ISO 17025 NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	
o-xylene MTBE (Methyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH1 (C10 - C40) TPH-CWG - Aliphatic > C5 - C6 TPH-CWG - Aliphatic > C6 - C8 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C10 - C12 TPH-CWG - Aliphatic > C12 - C16 TPH-CWG - Aliphatic > C16 - C21 TPH-CWG - Aliphatic > C21 - C35 TPH-CWG - Aliphatic > C25 - C35)	рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I рд/I	10 1 1 1 10 10 10 10 10 10 10	ISO 17025 ISO 17025 ISO 17025 ISO 17025 ISO 17025 NONE NONE NONE NONE ISO 17025 ISO 17025 ISO 17025 NONE NONE	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	< 10 < 1.0 < 1.0 < 1.0 < 1.0 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1	

Project / Site name: Ryebank Chorlton

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1386182	TP103	None Supplied	1.30	Brown loam and sand with gravel.
1386183	TP105	None Supplied	0.10	Brown clay and sand with vegetation.
1386184	TP111	None Supplied	1.20	Grey clay.
1386186	TP115	None Supplied	1.60	Grey clay.
1386187	TP116	None Supplied	1.50	Brown clay and sand with gravel.
1386189	TP127	None Supplied	1.80	Brown clay and sand with gravel.
1386190	TP128	None Supplied	0.80	Brown sand with gravel and clinker
1386191	WS101	None Supplied	1.80	Brown clay and sand.
1386192	WS102	None Supplied	3.20	Brown sand with clinker.
1386193	WS105	None Supplied	3.80	Grey clay.
1386194	WS112	None Supplied	2.30	Brown sand with clinker.
1389778	TP101	None Supplied	0.10	Brown loam and clay with vegetation.
1389779	TP113	None Supplied	0.10	Brown loam with vegetation.
1389780	TP119	None Supplied	0.10	Brown loam and sand with gravel.
1389781	TP120	None Supplied	2.10	Brown clay and sand with clinker.
1389782	TP125	None Supplied	0.10	Brown loam and clay with vegetation.
1389783	WS110	None Supplied	0.50	Brown sand with clinker.

Project / Site name: Ryebank Chorlton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-1.	L043-PL	w	NONE
Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE
Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	ISO 17025
Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture content, determined gravimetrically. (30 oC)	In-house method based on BS1377 Part 2, 1990, Classification tests	L019-UK/PL	W	NONE
Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Determination of PAH compounds in leachate by extraction in dichloromethane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L102B-PL	W	NONE
	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Asbestos quantification by gravimetric method - in house method based on references. 2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis. Determination of BTEX and MTBE in leachates by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of hexavalent chromium in leachate by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in leachate by acidification followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically. (30 oC) Determination of phenols in leachate by distillation followed by colorimetry. Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of PH in leachate by electrometric measurement. Determination of PH compounds in leachate by extraction in dichloromethane and hexane followed by GC-MS.	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Asbestos quantification by gravimetric method - in house method based on references. Asbestos quantification by gravimetric method - in house method based on references. 2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis. Determination of BTEX and MTBE in leachates by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260 Dependent option for Gravimetric Quant if Screen/ID positive scheduled. Determination of hexavalent chromium in leachate by addification in water then by addification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of hexavalent chromium in 1011 by extraction in water then by addification, addition of 1,5 diphenylcarbazide followed by colorimetry. Determination of metals in leachate by addification followed by ICP-OES. Determination of metals in soil by aqua-regia digestion followed by ICP-OES. Moisture content, determined gravimetrically, (30 In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. Moisture content, determined gravimetrically, (30 In-house method based on BS1377 Part 2, 1990, Classification tests Determination of phenols in leachate by distillation followed by colorimetry. Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry. Determination of phenols in soil by extraction with solicum hydroxide followed by GC-MS. Determination of phenols in dichloromethane followed by GC-MS. Determination of dichloromethane followed by GC-MS. Determination of dichloromethane followed by GC-MS. Determination o	Analytical Method Description Analytical Method Reference Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. Asbestos quantification by gravimetric method - in house method based on references. Asbestos quantification by gravimetric method - in house method based on references. 2:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis. Determination of BTEX and MTBE in leachates by headspace GC-MS. In-house method based on USEPA8260 L0738-PL. Determination of BTEX in soil by headspace GC-MS. In-house method based on USEPA8260 L0738-PL. Dependent option for Gravimetric Quant if Screen/ID positive scheduled. Dependent option for Gravimetric Quant if In-house method based on USEPA8260 Dependent option for Gravimetric Quant if In-house method based on USEPA8260 Dependent option for Gravimetric Quant if In-house method based on USEPA8260 Dependent option for Gravimetric Quant if In-house method based on USEPA8260 Dependent option for Gravimetric Quant if In-house method based on USEPA8260 Dependent option for Gravimetric Quant if In-house method based on USEPA8260 Dependent option for Gravimetric Quant if In-house method based on MEWAM 2006. Determination of hexavalent chromium in soil by extraction in water then by addification, addition of 1,5 dipherylcarbazide followed by colorimetry. Determination of metals in leachate by addification followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil. L039-PL Moisture content, determined gravimetrically, (30 poly), Classification tests In-house method based on Examination of Metals in Soil. Determination of phenols in leachate by distillation followed by Colorimetry. Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by Colorimetry. Determination of phenols in soil by extraction with sodium hydroxide followed by distilla	Analytical Method Description

Project / Site name: Ryebank Chorlton

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP- OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests, 2:1 water:soil extraction, analysis by ICP- OES.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (1hr extraction)	Sulphate, water soluble, in soil (1hr extraction)	In-house method	L038-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.		L010-PL	D	MCERTS
Total cyanide in leachate - 1µg/l	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests"	L009-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
TPH1 (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS.	In-house method	L070-PL	W	NONE
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX V JIWG RECEPTOR RANKING ASSESSMENT

Decision Support Tool for Receptor Risk Ranking

Stage 1 Hazard Identification		Score
Select ACM type (run model for each type to generate 'Worst Case' output)	Loose fibrous asbestos debris	3
Extent of degradation of ACMs	Degraded (Significant degradation in ACM; material has lost its basic integrity)	3
Friability and degree of bonding by matrix (ACM matrix, not ground materials)	Non-friable ACM or ACM with fibres firmly linked in a matrix	0
Distribution of Visible Asbestos Across Affected Area	Occasional/random occurrences of visible contamination by ACMs	1
Asbestos fibre type	Mainly chrysotile and trace amphibole (no crocidolite)	1
Sub-total		8
Hazard ranking		Low

No warranty, expressed or implied, or reliance, is provided in relation to the use of this tool.

It is contingent on users to satisfy themselves that the output from the tool is relevant and appropriate to the assessment being made.

© Joint Industry Working Group, ©CL:AIRE

Version 2, February 2017

Page 2 of 4

eceptor category	Public open space or building	No score required	
ge of Receptor	School age (>5 and <16)	3	
uration of exposure/site occupancy	<1 hour in any week (e.g. short duration work or equivalent infrequent exposure event when exposure aggregated over 1 yr)	0	
eceptor ranking		3	Low
ombined hazard, exposure and receptor ranking			Low
athway: Distance of Receptor from Source	In or within 10m of area of disturbance	4	
athway: Depth to impacted material	surface	E	
athway ranking		4E	High

Project Reference	13-533
Site Name	Rye Bank Fields
Client	Manchester Metropolitan University
Run by	R. Hodnett
Date	08-Jun-20
Reviewed by	M. Dyer
Characterisation of scenario being evaluated	Public Open Space utilised by members of the public for walking, foraging and planting, in particular of fruit trees. Evaluation completed to determine fate of the site and risk to those utilising the site.
Interpretation of scenario ranking by DST	Overall high ranking. Assessment completed using worst case scenario.

© Joint Industry Working Group, ©CL:AIRE Version 2, February 2017

Decision Support Tool for Receptor Risk Ranking

Stage 1 Hazard Identification		Score
Select ACM type (run model for each type to generate 'Worst Case' output)	Free dispersed fibres/fibre bundles	2
Extent of degradation of ACMs	Degraded (Significant degradation in ACM; material has lost its basic integrity)	3
Friability and degree of bonding by matrix (ACM matrix, not ground materials)	Non-friable ACM or ACM with fibres firmly linked in a matrix	0
Distribution of Visible Asbestos Across Affected Area	Occasional/random occurrences of visible contamination by ACMs	1
Asbestos fibre type	Mainly chrysotile and trace amphibole (no crocidolite)	1
Sub-total		7
Hazard ranking		Low

No warranty, expressed or implied, or reliance, is provided in relation to the use of this tool.

It is contingent on users to satisfy themselves that the output from the tool is relevant and appropriate to the assessment being made.

© Joint Industry Working Group, ©CL:AIRE

eceptor category	Residential	No score required	
ge of Receptor	School age (>5 and <16)	3	
uration of exposure/site occupancy	> 1hr <10 hr daily exposure (e.g. part-time to full time occupational exposure or extended daily recreational exposure)	3	
eceptor ranking		6	Medium
ombined hazard, exposure and receptor ranking			Low
athway: Distance of Receptor from Source	>10m of edge of area of disturbance	3	
athway: Depth to impacted material	Material buried at shallow depth, potential to be disturbed by excavation	С	
athway ranking		3C	Low

Project Reference	13-533
Site Name	Rye Bank Fields
Client	Manchester Metropolitan University
Run by	R. Hodnett
Date	15-Jun-20
Reviewed by	M. Dyer
Characterisation of scenario being evaluated	Public Open Space utilised by members of the public for walking, foraging and planting, in particular of fruit trees. Evaluation completed to determine fate of the site and risk to those utilising the site.
Interpretation of scenario ranking by DST	Overall Medium Ranking. Based on disturbance on site and worse case scenario.

© Joint Industry Working Group, ©CL:AIRE Version 2, February 2017